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A numerical technique for predicting microstructure in liquid

crystalline polymers

by JOHN HOBDELL and ALAN WINDLE*

Department of Materials Science and Metallurgy, Cambridge University,
Pembroke Street, Cambridge CB2 3QZ, U.K.

(Received 9 December 1996; accepted 7 March 1997 )

A numerical technique has been developed to model texture in nematic liquid crystals. The
technique di� erentiates between splay, twist and bend distortions and includes splay± splay
compensation. The technique is tested by the simulation of the FreÂ edericksz transition and
by the determination of minimum energy director ® elds for speci® c boundary conditions. To
model the bulk, periodic boundary conditions are imposed. The e� ect of elastic anisotropy
on disclination character has been investigated by terminating simulations before all the
defects have been annihilated. With a low twist constant, twist disclinations are observed;
with a high twist constant, wedge disclinations are observed. With a low twist constant and
high splay constant, realistic for polymeric liquid crystals, features observed experimentally
are simulated.

1. Introduction where n is a unit vector parallel everywhere to the
Thermotropic liquid crystalline polymers (TLCPs) director ® eld and k11 , k22 and k33 are the three Frank

have great potential as structural materials. They have elastic constants associated with splay, twist and bend
high strength and sti� ness in the direction of molecular distortions, respectively.
alignment and their low melt viscosity facilitates pro- In small molecule nematics, the elastic constants are
cessing [1]. Without resort to large aligning ® elds, often taken to be equal, allowing a signi® cant simpli-
moulded samples show inhomogeneities either in the ® cation of equation (1 ). In polymeric nematics this is
form of variations in the direction of alignment across not a reasonable assumption. In TLCPs, the splay
the sample or as topological defects. An understanding constant is the highest of the three elastic constants and
of such features is crucial to the further utilization of the twist constant is the lowest. The splay constant is
these promising materials. large in semi-¯ exible polymeric nematics because splay

The simplest type of liquid crystals are nematic liquid distortion requires a segregation of chain ends. For a
crystals. In the nematic mesophase, the molecules exhibit long chain molecule there are very few chain ends per
long range orientational order without any long range unit volume and so the very particular organization of
translational order; the molecules tend to align, but their chain ends necessary to allow any splay distortion is
centres of mass do not lie on a regular lattice. The mean entropically unfavourable [4]. Recent experimental
molecular orientation can be described by a uniaxial studies have suggested that there may be as much as a
tensor termed the d̀irector’. At larger size scales the factor of ten di� erence between the splay and bend
orientation of the director itself may vary and it is constants and the bend and twist constants in some
such variations which appear as microstructural textures TLCPs [5]. In addition to the splay, twist and bend
and defects. elastic constants, two other elastic constants exist, k13

The elastic theory of curvature distortions was and k24 . This paper will deal primarily with the ® rst
developed by Oseen [2] and Frank [3]. In the absence three elastic constants, but the implications of the k24 ,
of an applied orienting ® eld, the free-energy density is or s̀addle-splay’, constant will be explored.
given by equation (1). In order to probe the e� ect of unequal elastic con-

stants on microstructural defects and textures we have
F =

1

2
[k11 (V̄ n)2+k22 (n¯V9

n)2+k33 (n
9V9

n)2] developed a numerical technique which forms the basis
of this paper which is arranged as follows. Section 2

(1) presents details of the numerical technique itself; § 3
shows tests of the technique against analytical results
(where these are available); § 4 presents the results of*Author for correspondence.
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158 J. Hobdell and A. Windle

simulations, and their comparison with experiment, and trial orientation to the director stored therein. The
di� erence in the total system energy between the existing§ 5 is a discussion of the results.
orientation and the trial orientation is found using the
energy calculation described in § 2.2. A Metropolis2. Numerical technique

Several workers have developed mesoscale methods [11] algorithm is used to decide whether to accept or
reject the trial orientation. If the energy with the trialfor simulating texture and texture evolution in liquid

crystals. These methods have either relied on the equal orientation is lower than that calculated with the existing
orientation, then the trial orientation is accepted. If,constant approximation [6 ± 8], have been restricted to

two dimensions [9] or have adopted both limitations however, the energy with the trial orientation is higher
than that with the existing orientation, then the new[10] and none has addressed the issue of splay± splay

compensation where splay on one plane is opposite to trial orientation is accepted with a probability given by
equation (2).splay on a perpendicular plane [4]. In order to simulate

polymeric nematics in three dimensions, it is necessary
P =exp[Õ b(Etrial Õ Eold )] (2)

to distinguish between the three types of distortion in
In equation (2), b=1/kT , where k is the Boltzmannthree dimensions. The method we have adopted involves
constant and T is the t̀emperature’. The t̀emperature’dividing the geometry of interest into an array of cubic
in this case is not the thermodynamic temperaturecells, as shown in ® gure 1. Each cell stores a director to
but is part of the numerical technique. The techniquerepresent the local orientation. Since the materials are
may be used in two modes. If the global minimum isdeep in the nematic phase, the local order parameter is
sought, then the t̀emperature’ is gradually lowered fromconsidered to be ® xed and the local director is stored
a high value towards zero. The e� ect of an elevatedas a vector whose direction is parallel to the local
t̀emperature’ is to allow the system to climb out of localorientation. Clearly a vector does not have the correct
minima. However, too high a t̀emperature’ will meanuniaxial symmetry for a nematic director, which is
the system is near to a nematic± isotropic transitiontechnically a tensor, and this complication is overcome
where it ceases to be a reasonable assumption to havein the calculation of the distortion energy described later.
a ® xed order parameter and there is a high degree of
¯ uctuation in the orientations of the directors.2.1. Program structure

As the system tends towards a minimum more andThe ® rst stage is to initialize the model. Either the
more of the trial orientations are rejected and there is adirectors are all aligned to simulate a monodomain or
tendency for the algorithm to become very ine� cient.set to random orientations to simulate an isotropic
The ratio of accepted changes to trials is termed thecondition. Directors in cells forming the boundaries are
acceptance ratio. In order to increase the acceptance® xed at speci® c orientations, usually either parallel to
ratio it is necessary to reduce the angular variation ofthe boundary to simulate planar boundary conditions
the trial orientations. It is a simple matter to de® neor perpendicular to the boundary to simulate homeo-
a cone of semi-angle c about the current directortropic boundary conditions. Periodic boundary con-
orientation and select a trial orientation with a uniformditions may also be simulated by considering the cells
probability from within this cone. The smaller thedown one face of the model to have the cells on the
semi-angle, c, the higher the probability of acceptance.opposite face of the model as their external neighbours.
An acceptance ratio of 50 per cent is widely chosen (forFollowing initialization, an annealing algorithm is
a discussion of this see [12] ) and to maintain this valueused to reduce the total energy of the system. It involves
a feedback mechanism is included. The acceptance ratiopicking cells at random and assigning a randomly chosen
is calculated every 500 trials and the cone semi-angle is
altered according to the scheme in equation (3).

cnew=
Calculated acceptance ratio

Required acceptance ratio
c (3 )

An additional check ensures that the cone semi-angle
does not vary by more than a factor of 10 after any one
set of 500 trials.

The second mode of running the simulations is
to ® x the t̀emperature’ at a value well below the
nematic ± isotropic transition and to select every new trialFigure 1. The model. Each cubic cell stores a director which
orientation from an isotropic distribution. Simulationsis parallel to the average orientation of the long axes of

the molecules within the cell. are run from a randomized initial state with periodic
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159Modelling microstructure in L CPs

boundary conditions allowing the evolution of textures distortions. The equation is expanded into a set of
partial derivatives as shown in equations (4) to (6).via the annihilation of defects. It is possible to examine

the character of the defects which occur during the
evolution as a function of the elastic constants. For these (V̄ n)2=A ‚ nx

‚ x
+

‚ ny

‚ y
+

‚ nz

‚ z B2

(4 )
simulations, the e� ect of the Metropolis algorithm is to
apply a ¯ uctuation to the directors to aid the annealing

[n¯(V9
n]2=CnxA ‚ nz

‚ y
Õ

‚ ny

‚ z B+nyA ‚ nx

‚ z
Õ

‚ nz

‚ x Bprocess. It is, in e� ect, a low t̀emperature’ Monte Carlo
simulation.

The question of the size of the cells is of some
+nzA ‚ ny

‚ x
Õ

‚ nx

‚ y BD2

(5 )importance. As will be shown later, the model accurately
reproduces continuum results. When simulations are
annealed to the minimum energy state, at zero Monte

(n
9

(V9
n) )2= K iCnyA ‚ ny

‚ x
Õ

‚ nx

‚ y B Õ nzA ‚ nx

‚ z
Õ

‚ nz

‚ x B DCarlo temperature, the results are in the continuum limit
and increasing the number of cells merely increases the
resolution. If the Monte Carlo temperature is not zero, +jC nzA ‚ nz

‚ y
Õ

‚ ny

‚ z B Õ nxA ‚ ny

‚ x
Õ

‚ nx

‚ y B Dthen the simulations will include the e� ect of thermal
¯ uctuations. In the simulations presented here, all the
results are produced with a very low Monte Carlo +kCnxA ‚ nx

‚ z
Õ

‚ nz

‚ x B Õ nyA ‚ nz

‚ y
Õ

‚ ny

‚ z B D K 2temperature and the e� ect of the ¯ uctuations is very
small. Such small ¯ uctuations are included purely to (6)
prevent simulations locking-up in local minima.

Note that equations (4) and (5) are scalar and the resultThere is a relationship between the size of the cells
may simply be squared to give the distortion to insertand the Monte Carlo temperature. If the cells are of
into equation (1), while equation (6) produces a vectormolecular scale, then the technique may be used to
and it is its magnitude squared that is inserted intosimulate a nematic± isotropic transition in much the
equation (1).same way as Lebwohl and Lasher did [13]. At this size

The energy is calculated for a single cell. Firstly, thescale the interaction energy must be considered in terms
cell is broken down into eight corners. Around eachof an intermolecular potential rather than a distortion
corner are three neighbours as shown in ® gure 2. For

free energy. If the cell size is increased, then each cell
each corner, the three neighbours are used to calculate

may be considered to contain more than a single
values for the splay, twist and bend distortions by

molecule and the e� ect of thermal ¯ uctuations (at the
approximating the partial derivatives by forward di� er-

same value of kT per cell ) will be reduced. As the size
ences. For example, the change in the x component of

of each cell is increased further, the e� ect of thermal the director with respect to x is given by equation (7):
¯ uctuations is reduced and the system will tend towards
the continuum limit where thermal ¯ uctuations are ‚ nx

‚ x
=

nx (i+1, j, k) Õ nx (i, j, k)

DL
(7 )negligible. For a given distortion, the distortion free

energy scales linearly with the distance across which the
distortion occurs. This statement implies that the coe� -
cient, b, in equation (2) may be interpreted either as a
reciprocal temperature or as a size scale. In this work
we consider values of b which are large and interpret
this to be a large size scale, approaching the continuum
limit. In future work the e� ect of smaller values of b will
be considered as a way of bridging the gap between
atomistic and continuum size scales.

2.2. Energy calculation
The calculation of the energy is based on Frank’s

equation (equation (1) ) for the free energy associated
Figure 2. Around each cell there are eight corners; around

with a distorted director ® eld, n, in a liquid crystal. By each corner are three neighbouring cells. In the diagram,
basing the calculation on this equation it is possible to the three neighbours shown are along the positive

coordinate axes.separate the contributions from splay, twist and bend
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160 J. Hobdell and A. Windle

The change in the y component of the director with Hess have only presented results for two dimensional
simulations.respect to z is given by equation (8):

2.3. Splay ± splay compensation and k24
‚ ny

‚ z
=

ny (i, j, k +1 ) Õ ny (i, j, k)

DL
(8 )

One of the important advances of the method
presented here is the correct handling of splay± splay

The other seven partial derivatives found in equations compensation ( ® gure 3). Splay distortion is described
(4) to (6) are approximated similarly. mathematically by the divergence term in Frank’s

It is necessary to use forward di� erences rather equation. If the divergence of the director ® eld on one
than central di� erences since it is a requirement of the plane is in the opposite direction to a divergence of
algorithm to have a dependence on the orientation of similar magnitude on a perpendicular plane then the
the director stored in the central cell. In central di� er- total divergence will be zero. This situation is known as
ences, the derivative at a point is given by the di� erence splay± splay compensation. Previous techniques have
between the value in the cell to the left and the value in not dealt with splay± splay compensation because only
the cell to the right. In the approach adopted here, the pairwise interactions between neighbours have been
derivative is approximated by the di� erence between the considered. For example the sin2 h algorithm used by
cell to one side and the central cell. In order to ensure Bedford et al. [16] calculated the angular di� erence
that cells to both sides of the central cell have equal between a central director and its six neighbours
weighting, splay, twist and bend distortions are calcu- individually. The sines of the angular di� erences were
lated for all eight sets of three neighbours around the
corners of the central cell and the eight values are
averaged. Energies are obtained by multiplying each
distortion by the relevant elastic constant.

On changing the orientation of the central director,
the energies calculated for the six nearest neighbours
will change. In order to calculate the change in the
system energy as a result of changing the orientation of
a single director it is necessary to recalculate all terms
which include the orientation of that director. In fact
this involves recalculating all eight corners of the
central cell and four of the corners of each of the six
neighbouring cells.

One complication is the inability of vectors to describe
nematic symmetry. This is dealt with by inserting a
simple check to determine whether two vectors make an
acute angle with each other or not. If the angle is greater
than 90 ß then one of the vectors is ¯ ipped through 180ß
so that the angle is less than 90 ß . This does give a
discontinuity in the gradient of the energy function
whenever neighbours are at 90 ß to each other, but since
this will only happen at the cores of disclinations where

Figure 3. The diagram shows the director ® eld for an idealised
low angle elasticity is inapplicable anyway, it is accepted escaped Õ 1 disclination line. The nail convention is used
in this work. to represent directors pointing out of the plane. The points

An alternative way of dealing with the problem of the of the nails point out of the plane and the lengths of the
shafts represents the components of the directors lying innematic symmetry is to describe the director by a second
the plane of the page. The centre of the diagram is arank tensor rather than a vector. This approach has
region of splay± splay compensation; the director ® eld in

been used by the authors [14] with only splay distortion the x-z plane splays outwards while the director ® eld in
considered and, more recently, by Gruhn and Hess [15]. the y-z plane splays inwards. The centre of the diagram
These workers have presented an elegant Monte Carlo is also a region of opposing twist distortions: along the

line x = y the twist is in a clockwise sense while alongalgorithm which distinguishes between the three elastic
the line x =Õ y the twist is in an anti-clockwise sense.constants with a tensor description of the director ® eld.
Calculations for this idealized geometry show that the

Although their description eliminates the need for the splay, twist and bend distortions are all zero at the centre
¯ ipping algorithm utilized in this work and is, in of the diagram but that the saddle-splay distortion takes

its largest value there.principle, extendable to three dimensions, Gruhn and
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161Modelling microstructure in L CPs

found and squared before the contributions from each formed. This section describes testing of the method for
special situations where the component distortions mayof the six neighbours were added. The result was that a

splay± splay compensated region would have the same be calculated analytically and for geometries where the
minimum energy director ® elds are known for di� erentenergy calculated as an equivalent pure splay situation

where all the divergence was in the same direction. sets of elastic constants.
An example of a splay± splay compensated structure

is shown in ® gure 13. It is in fact a cross-section of an
idealized escaped Õ 1 line disclination. Calculations 3.1. Energies of point defects
show that the centre of such a linear texture exhibits A suitable set of geometries, used to test the calculation
zero splay distortion since it is splay± splay compensated, of the component distortions, was the range of PoincareÂ
it also exhibits zero twist distortion. However, the centre point defects [17, 18] shown in ® gure 4. These were
of the escaped Õ 1 line is clearly not a region of zero chosen for a number of reasons. Firstly, analytical values
distortion and the distortion in this situation is of the energies may be calculated for each geometry.
accounted for by the inclusion of the saddle-splay or k24 Secondly, the di� erent defects all have very di� erent
term (equation (9)) in Frank’s equation (equation (1)). amounts of splay, twist and bend distortion associated

with them. Finally, the Col defect (sometimes referred
to as the Hyperbolic Hedgehog) has a region of completeFsaddle± splay=Õ

1

2
k24[V¯(n Ö VÖ n +nV¯n)] (9)

splay± splay compensation around its equatorial plane
and so the correct determination of its energy impliesAlthough this term is often neglected it may be important
the correct inclusion of splay± splay compensation in thein some situations. In polymeric nematics, where splay
calculations.distortion is prohibited by the lack of chain ends, saddle-

Table 1 shows a comparison of the energy valuessplay distortion may be the only way that any divergence
calculated for the model using a lattice of size 1003. Thecan be accommodated. In the work presented here we
energy of each of the defects is calculated for a sphericalhave not included the k24 term, so perfectly splay± splay
volume of radius R and is expressed in terms of thiscompensated geometries will have zero energy associated
radius and the elastic constants. For example thewith them. Nevertheless, the model does have the facility
analytical value for the distortion energy of a Noeud (orfor including this term and its role will be examined in
Hedgehog) point defect is given by:future studies.

ENoeud=8pk11R (10)3. Testing the technique

In order to have any con® dence in predictions made
using this technique, a number of tests have been per- The energy for a Col (or Hyperbolic Hedgehog) is

Figure 4. The range of PoincareÂ
point defects. The director
® elds are illustrated by stream-
lines which are parallel to the
director; for clarity, only a
selection of the streamlines is
shown. Each diagram is set
with the rotational symmetry
axis of the defect lying approxi-
mately from the bottom left to
the top right. The equatorial
plane is perpendicular to this.
(a) The Hedgehog or Noeud
point; (b) the Foyer point; (c) the
Centre point; (d ) the Col-foyer
point; (e) the Col point.
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162 J. Hobdell and A. Windle

Table 1. Energies of point defects.

Analytical energy Modelled energy

Splay Twist Bend Splay Twist Bend
Point k11 R k22 R k33 R Total k11 R k22R k33 R Total

Col 5 0́27 0 0́00 3 3́51 8 3́78 5 0́42 0 0́00 3 3́22 8 3́65
Col-foyer 2 1́07 4 1́89 4 5́36 10 8́31 2 1́13 4 1́66 4 5́76 10 8́54
Centre 3 3́51 8 3́78 5 0́27 16 7́55 3 3́84 8 3́31 5 1́49 16 8́64
Foyer 16 3́24 4 1́89 2 1́66 22 6́79 16 4́55 4 1́66 2 2́54 22 8́74
Noeud 25 1́33 0 0́00 0 0́00 25 1́33 25 3́25 0 0́00 0 0́39 25 3́64

Of particular note is the correct calculation of the
energy of the Col point defect. This defect contains
a region of splay± splay compensation around its
equatorial plane. Figure 5 shows a diagram of a Col
point defect. In the x-y plane of the defect the divergence
of the director ® eld is directed outwards, but along the
x axis of the x-z plane the divergence is inwards. The
equatorial (x-y) plane is thus a region which exhibits
splay± splay compensation. Nevertheless, the energy
calculated using the new algorithm is correct and agrees
with the analytical result, con® rming that the model
handles correctly this aspect of the distortion ® eld.

3.2. Parallel plates simulations
For the modelling technique to have any useful

predictive value it must be capable of ® nding director
® elds which minimize the Frank free energy. This is a
variational problem and the usual approach to ® nding
such minima is to solve the Euler± Lagrange equation
for the geometry of interest. The literature contains a
few examples of situations where the Euler± Lagrange
equation has been solved with di� ering elastic constants,
and comparison with these has been used as a further
test of the numerical technique presented here.

One particular example for which analytical solutions
were presented by Meyer [4] is shown in ® gure 6. The
geometry is that of two parallel plates with homeotropic
boundary conditions at one plate and homogeneous

Figure 5. A Col type point defect. The streamlines in the
main diagram follow the director trajectory. The inset
diagrams show the director ® elds on the equatorial plane
and on a perpendicular vertical plane. As can be seen, the
divergence on the equatorial plane is away from the centre
while the divergence on the vertical plane is towards the
centre; the equatorial plane is thus a region which exhibits
splay± splay compensation.

given by:

Figure 6. A splay± bend layer produced by hybrid boundaryECol=8pR A k11

5
+

2k33

15 B (11)
conditions (after Meyer [4] ).
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163Modelling microstructure in L CPs

boundary conditions at the other. Solutions exist for spread out and the splay distortion is concentrated near
to the homogeneous boundary (z=0 ); with equal con-equal constants, high splay constant and high bend
stants the director varies smoothly from one boundaryconstant.
to the other.The director must change in orientation by 90 ß from

A comparison between the analytical and theone plate to the other. The way that the angle varies
simulated results is plotted in ® gure 8 with k11 &k33depends on the ratio of the splay and bend elastic
being simulated by setting k11 =1, k22 =1 and k33 =0;constants. If the elastic constants are equal, the director
k11 %k33 is simulated by setting k11 =0, k22 =1 andvaries smoothly (dh/dz is constant). If the splay constant
k33 =1, and equal constants are simulated by settingis very much higher than the bend constant then all the
k11 =k22=k33 =1. The agreement with the analyticalsplay distortion is spread between the plates, while the
results is excellent, giving further con® dence in thebend distortion is concentrated near to the homeotropic
numerical technique. The technique may be used to ® ndboundary. If the bend constant is the largest then the
solutions for any ratio of elastic constants. The solutionsreverse occurs; the bend distortion being spread between
occupy the region bounded by the limiting cases shownthe plates, while the splay is concentrated near to the
in ® gure 7.homogeneous boundary. This behaviour is an example

of a general rule: the higher the elastic constant for a
3.3. FreÂ edericksz transitionparticular distortion, the more spread out that type of

An additional test of the technique has been todistortion will be.
simulate the FreÂ edericksz transition [19]. In theThe analytical results for the variation of the angle of
FreÂ edericksz transition, samples are typically constrainedthe director, hz , for two plates separated by a distance
by two parallel plates. The surfaces of the plates impose

d are as follows.
either homeotropic or homogeneous boundary con-For k11 =k33 :
ditions which de® ne the direction of alignment at zero
applied ® eld. By the application of a critical ® eld the

hz=
p

2A1 Õ
z

dB (12) alignment begins to change from a monodomain aligned
in the direction de® ned by the boundaries towards the

For k11&k33 : direction favoured by the applied ® eld. The onset of the
transition involves only one type of distortion and so

hz=cosÕ 1A z

dB (13) the critical ® eld is dependent only on the elastic constant
associated with that distortion. By suitable choice of
geometry, all three distortions may be probed. For equalFor k33&k11 :
elastic constants, all three geometries should show the
transition at the same critical ® eld. Figure 9 shows ahz= sin Õ 1A1 Õ

z

dB (14)
schematic of the three geometries.

It is simple to simulate the FreÂ edericksz transition
In deriving these solutions, Meyer assumed (reasonably) using the numerical technique described here. The e� ect

that the distortion would be two dimensional with the of a magnetic ® eld is included via an additional energy
director remaining in the plane de® ned by the homeo- term as shown in equation (15), where xa is the aniso-
tropic and homogeneous boundary conditions and that tropy in the diamagnetic susceptibility per unit volume,
the director orientation, hz is a function only of z. H is the ® eld strength and n is a vector parallel to the

By using the numerical technique, it has been possible director stored in a given cell.
to simulate this geometry in three dimensions. An
advantage of this approach is that no assumptions are

Emag =
1

2
xa ( H ¯n)2 (15)

made as to the nature of the solutions. If a solution
involving some twist distortion is favoured, then it is The ® rst test was to show that the transition occurred
not precluded by the way the simulation is set up. at the same applied ® eld for each geometry. Figure 10
Simulations were run from random initial conditions in shows the variation of the angle of the director on the
the simulated annealing mode to anneal the system to mid-plane of the simulation as a function of applied ® eld
its minimum energy state. Figure 7 shows the results of strength for the splay geometry. The graphs for the twist
the simulations for the three situations of a high splay and bend geometries are identical. According to theory
constant, equal constants and a high bend constant. It (see for example [20] ), the transition should occur at a
is clear that, when the splay constant is high, the splay ® eld strength given by equation (16).
distortion is spread out and that the bend distortion is
concentrated near to the homeotropic boundary (z =d ); Hc=

p

d A k

xaB1/2

(16)
when the bend constant is high the bend distortion is
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164 J. Hobdell and A. Windle

Figure 7. Minimum energy direc-
tor ® elds for parallel plates with
homogeneous boundary condi-
tions at z =0, and homeotropic
boundary conditions at z = d.
The results shown are x-z slices
through a three dimensional
(10 Ö 10 Ö 10) simulation with
® xed boundaries at z =0 and
z =d and periodic boundaries
in the x and y directions.
(a) Shows the variation of the
director across the sample for
a high splay constant; the splay
distortion is spread out and the
bend distortion is concentrated
near the z= d boundary.
(b) Shows the variation for
equal constants; the director
varies uniformly. (c) Shows the
variation for a high bend con-
stant; the bend distortion is
spread out and the splay distor-
tion is concentrated near the
z =0 boundary layer.

Figure 8. The actual variation of
the director angle across the
sample is plotted to compare
simulated and analytical
results. The lines represent the
analytical results in each case
while the points are the simu-
lated values. In the simulation
with k11&k33 , k33 was actually
set to zero; for the simulation
with k11% k33 , k11 was set to
zero.

Figure 9. Diagrams showing the three geometries of the FreÂ edericksz transition. S is the direction of monodomain alignment
imposed by the boundary conditions when there is zero applied ® eld, H is the direction of the applied ® eld. The diagrams
show the variation of the director between the two plates for a ® eld strength which is signi® cantly higher than the critical
® eld strength.
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165Modelling microstructure in L CPs

Figure 10. Plot of hmax , the angle
of the director on the mid-
plane, versus H , the magnetic
® eld strength, for the splay geo-
metry with equal elastic con-
stants, k11=k22=k33=k0 . The
simulation was performed
using a 1 Ö 1 Ö 10 lattice (d=
9d0 ). The actual values for k0 ,

d0 and xa were set to unity in
the simulation. Each data point
involved a calculation of 64 000
Monte Carlo trials per cell at
values of b increasing from 8
to 8 Ö 108. The graph shows
excellent agreement between
the simulated and analytical
results; the transition occurs at
the theoretical critical ® eld. The
curves for the twist and bend
geometries are identical and
have not been plotted.

where d is the separation of the plates and k is the once the director has begun to rotate towards the
magnetic ® eld, then the distortion will begin to involverelevant elastic constant. Figure 10 shows the transition

occurring at exactly this ® eld strength. some bend distortion and so the bend elastic constant
will have an e� ect on the rotation of the director withOnce the critical ® eld has been reached, further

increase of the ® eld will cause the director to turn further increasing ® eld. One would expect an increase in the
bend constant to reduce the rotation of the director withand further towards the ® eld direction. Chandrasekhar

[20] has calculated how the director on the mid-plane increasing ® eld. Figure 11 shows just such behaviour.
Having shown that the position of the splay transitionof the sample varies as a function of ® eld strength.

Figure 10 shows a comparison of the analytical results is una� ected by changes in the value of the bend elastic
constant, a further test is to show that the position ofand the result of simulations using the numerical

technique. the splay transition is a� ected by changes in the value
of the splay constant. Figure 12 shows that the positionOf further interest are simulations where the elastic

constants are changed with respect to each other. The of the transition is proportional to the square root of
the splay elastic constant as expected from equation (16).onset of the splay transition should depend only on the

value of the splay elastic constant and so should remain Another test of the simulation was to determine what
e� ect lattice size has on the transition. The theory of theunaltered by any change in the bend constant. However

Figure 11. Graph showing the
variation of hmax , the director
angle at the mid-plane, versus
magnetic ® eld strength, deter-
mined from the model. The ® ve
curves represent simulations
run with the splay constant
® xed at k11=k0 and varying
bend constant. It is clear that
while the onset of the transition
is unaltered by the variation of
the bend constant, for ® elds
higher than the critical ® eld,
hmax is strongly a� ected by the
value of the constant. If the
bend constant is high then the
director is hindered from rota-
tion towards the magnetic ® eld.
The simulations were run under
the same conditions as used
for ® gure 10.
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166 J. Hobdell and A. Windle

Figure 12. Graph showing the
variation of hmax , the director
angle at the mid-plane, versus
magnetic ® eld strength in the
splay geometry. The three
curves represent simulations
run with the bend constant
® xed at k33= k0 and varying
splay constant. The position of
the transition changes as a
result of the di� erent splay con-
stant. When the splay constant
is halved, the critical ® eld is
multiplied by ( 1

2 )D whereas
when the splay constant is
doubled the critical ® eld is mul-
tiplied by 2D. The simulations
were run under the same condi-
tions as used for ® gure 10.

Figure 13. Relationship between
the reciprocal of the critical
® eld and the separation of the
plates is a straight line. In the
graph, d is the lattice size minus
one and d0 is the size of the
lattice cells, arbitrarily assigned
the value of 1 unit of length. It
can be seen that down to very
small values of d the straight
line relationship is maintained.

FreÂ edericksz transition predicts that the critical ® eld is constants. In particular, simulations have been run with
the elastic constants in the ratio thought to occur inproportional to the reciprocal of the space between the

parallel plates. In the simulations here, this spacing is liquid crystalline polymers.
In order to probe the bulk, simulations have beenproportional to the number of lattice cells minus one in

the direction with the ® xed boundaries. Figure 13 shows performed with periodic boundary conditions. If the
simulations are run for su� cient time then the micro-the variation of the critical ® eld with the reciprocal

of the planar spacing. It can be seen that the straight structures will anneal to a monodomain with all the
directors lying at the same orientation. However, if theline behaviour is maintained down to simulations of just

3 cells! This behaviour is accounted for by the fact that simulations are stopped at an earlier time, then states
are found where all the high energy distortions havethe onset of the transition is the point at which the

director in the mid-plane just starts to rotate away from annealed out leaving a network of disclinations. The
nature of the microstructure which is revealed dependsthe monodomain alignment imposed by the boundary

cells. At this point the angle of rotation is very small strongly on the elastic constants inserted into the
simulation.and so even for small lattice sizes the numerical

approximations hold good. In order to obtain quantitative information about
the nature of the defects which occur in simulations,
algorithms have been devised to analyse the data pro-4. Simulation of the bulk

The technique has been used to study the evolution duced from simulations. Before presenting results from
simulations, a description of these t̀opological probes’of textures and how the shapes of the defects which are

present during the evolution vary with di� erent elastic is included.
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167Modelling microstructure in L CPs

4.1. Topologica l probes rotation vector, X , and the disclination line, L, is found.
If the characteristic angle a is 0 ß , the disclination is pureThe ® rst probe used identi® es 1

2 strength disclination
lines and is based on an algorithm derived by Zapotocky wedge in nature; if the angle a is 90 ß , then the disclination

is pure twist in nature; if the angle a is between theseet al. [10]. Their algorithm is two dimensional, but is
extended simply to three dimensions by repeating for values, then the disclination is of mixed nature. A

shortcoming of the current algorithm is that it is notsets of four cells in the x-y plane, the y-z plane and the
z-x plane. In essence, the algorithm involves searching able to determine the sign of the disclination. This is

because the algorithm only ® nds the acute angle betweenaround all sets of four cells forming a 2 Ö 2 square and
checking for a contained disclination. A disclination is the direction of the disclination line and the rotation

vector. To distinguish between +1
2 and Õ 1

2 wedge dis-found if, when stepping around the set of four cells in a
clockwise direction, the director changes its orientation clinations it is necessary to determine whether the

rotation vector is parallel to the disclination line (+1
2 )by 180ß . Figure 14 (a) shows an example of a strength 1

2
twist disclination contained by a set of four cells. Once or antiparallel to the disclination line (Õ 1

2 ).
A second probe identi® es escaped strength 1 dis-the location of the cores of disclinations have been

identi® ed as a series of sorted points, then an attempt is clination lines. This algorithm operates by considering
a two dimensional square circuit. The projection of themade to distinguish between wedge and twist dis-

clinations. The characteristic which distinguishes these directors onto the two dimensional plane are found and
as the circuit is traversed the total angle through whichtypes of disclinations is the angle between the rotation

vector, X , and the direction of the disclination line, L. the projected director varies is found. If this angle is
360ß , then either an escaped strength 1 defect, or a pairIn this paper, this angle is termed the characteristic

angle of the disclination, a. An approximate direction of strength 1
2 defects is contained within the circuit.

Various sizes of circuit may be used. If a 2 Ö 2 squarefor the rotation vector, which is the axis of the rotational
distortion around the disclination line [21, 22], is found is used then strength 1 disclinations may not be distin-

guished from a monodomain. The smallest circuit whichby adding the vector cross products formed from each
pair of the four directors surrounding the disclination can be used is a 3 Ö 3 square. Sizes up to 7 Ö 7 have

been considered, but the best results seem to be obtainedcore. Given that the path of the disclination line has
been determined as a sorted sequence of points in three with a 4 Ö 4 circuit. If smaller circuits are used then not

all escaped lines are found. If larger circuits are useddimensions, an approximation to the direction of the
line at any point may be taken as the vector from the then many circuits will ® nd the same escaped line and

the location of the line cannot be determined with anyprevious point along the line to the next point along
the line as shown in ® gure 14 (b). The angle between the precision. Also, the likelihood of ® nding pairs of 1

2

strength disclinations of equal sign is higher for larger
circuits. The operation of the circuits is illustrated in
® gure 15.

4.2. Simulation for equal constants
With equal elastic constants the microstructures look

similar to the simulation outputs from various other
techniques. Figure 16 shows a slice through a simulation

Figure 14. (a) All sets of four cells forming a 2 Ö 2 square are run for this condition. However, it is interesting to note
checked using the algorithm described by Zapotocky et al. the presence of escaped strength Õ 1 lines which have
[10] to ® nd disclinations. If a disclination is found then

not in general been seen in earlier simulations, andthe coordinates of the site are recorded. When a dis-
® gure 17 shows an enlargement of the escaped Õ 1 lineclination is found its rotation vector is determined by

taking the cross product of each pair of directors around shaded in ® gure 16. The occurrence of escaped Õ 1 lines
it and summing the resultant vectors. In the diagram, all probably re¯ ects the correct handling of splay± splay
the directors lie in a plane and the rotation vector, V , is compensation in the new algorithm, for such a line is
the normal to this plane. (b) Having found the coordinates

an example of a splay± splay compensated structure asof all the disclination sites, the sites are sorted such that
discussed in § 2.3. Earlier numerical techniques will treatthey form a continuous disclination line (or lines). The

direction of the line at any point is estimated by taking this geometry as a high energy state rendering it less
the vector from the previous site along the line to the likely to occur, while in this improved approach it
next site along the line. In the diagram, the direction of actually has zero energy down the centre. A fuller
the disclination line at site B is taken to be the vector

treatment including the k24 term is required to determinefrom site A to site C. The character of the disclination
whether escaped Õ 1 lines are really likely to prevail inline at each site is determined by ® nding the angle between

the rotation vector and the direction of the line. small molecule microstructures.
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168 J. Hobdell and A. Windle

Figure 15. To investigate the occurrence of escaped dis-
clination lines of unit strength, circuits are performed
around the projections of the directors onto the x-y plane,
the y-z plane and the z-x plane. In the diagram, both
circuits are around 3 Ö 3 squares of cells. Circuit A
encloses an escaped strength +1 disclination; when circuit
A is traversed, the orientation of the projection of the
director changes by 360ß . Circuit B does not enclose a
defect; when circuit B is traversed the orientation of the
projection of the director remains unchanged. Circuits
may be performed around larger squares of cells, but it is Figure 17. A close up of the escaped Õ 1 disclination line
more than likely that an escaped strength 1 disclination highlighted in ® gure 16. Comparison with ® gure 3 con-
will be confused with two 1

2s of the same sign, and also ® rms that the feature is indeed an escaped Õ 1 line and
that the position of the axis of the defect will not be that it is thus a region of splay± splay compensation.
known with as much precision.

Figure 16. Results from a simula-
tion performed on a
30 Ö 30 Ö 30 lattice with peri-
odic boundary conditions. The
simulation was run with equal
constants, k11=k22= k33=1,
and with b =30; it was run for
40 000 Monte Carlo trials per
cell. The diagram shows an x-

y slice through the model; it
shows four 1

2 strength disclina-
tions indicated by small circles
and an escaped strength Õ 1
disclination in the shaded
region.

The equal constants simulations show 1
2 strength dis- portioned between wedge and twist types. To illustrate

the di� erence in character a colour coding has beenclination lines which reduce in length as the simulations
proceed. The character of the disclinations is equally used. For those disclination lines with a characteristic
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169Modelling microstructure in L CPs

angle of less than 30 ß between the line and the rotation
vector, implying a predominantly wedge type, the colour
blue is used; for disclinations with a characteristic angle
of greater than 60 ß , implying a predominantly twist type,
the colour red is used; for lines with a characteristic
angle of between 30 ß and 60 ß , implying a mixed type,
the colour green is used. Figure 18 shows a single 1

2
strength disclination line of varying character which
snakes its way through the periodic simulation box Figure 19. A closer examination of y-z slices through the
and several escaped strength Õ 1 lines. With periodic same simulation as in ® gure 18 reveals a change in the
boundary conditions, the simulation box tessellates and, character of the strength 1

2 line from one side of an escaped
strength Õ 1 line to the other. In the diagrams, thein fact, the sections of strength 1

2 line seen in the ® gure
strength 1

2 disclination is directed straight out of the page,are all sections of periodic copies of a single line which
passing through slices 18, 19, 20, 21 and 22 in turn. The

forms a closed loop. This condition implies that sections escaped strength Õ 1 line (shaded) lies in the plane of the
of the line will be experiencing the distortion ® elds diagrams in slice 20. As can be seen, the rotation vector
around other sections of the same line. The longest of in slice 18 is in approximately the (Õ 1 0 1) direction, while

the rotation vector in slice 22 is in approximately thethe escaped strength Õ 1 lines clearly connects two
(1 0 1) direction. Since the disclination line continues insections of the strength 1

2 line. Topologically, it is imposs-
the positive x direction there is the implication of a change

ible for a disclination line to terminate within the bulk. in the character of the disclination line from one side of
It may either close on itself to form a loop, terminate the escaped Õ 1 line to the other. (Figure 20 shows a
on a surface or form a junction with another disclination schematic of the situation viewed on the z-x plane.)
line. By performing computer simulations, it is possible
to examine what is occurring in the bulk far more readily actually reassuring since it implies that the lattice is not
than in experiments. It is possible to look at the structure imposing special directions along the coordinate axes.
of the disclinations at the junction between a strength 1

2 By stepping through the simulated volume one layer
line and an escaped Õ 1 line. The longer of the strength at a time it is possible to observe the character of the 1

2Õ 1 lines in ® gure 18 does not meet the strength 1
2 line strength disclination line on either side of the junction

at a convenient angle to the underlying lattice for with the escaped strength Õ 1 line. Figure 19 shows
analysis, so one of the shorter sections is considered. It three such layers, one to one side of the junction point,
is worth noting the fact that disclinations do not always one coincident with the junction and one to the other
meet at convenient angles to the lattice of cells; this is side of the junction point. As the 1

2 strength line passes
the junction with the escaped Õ 1 line, the rotation
vector changes direction suggesting a change in the
character of the 1

2 strength disclination line. Figure 20
shows a schematic of the way the rotation vector changes
from one side of the junction to the other. The X vector
of the strength 1

2 disclination, and the distortion ® eld,
associated with it, is rotated by p about the Õ 1 axis.

4.3. Varying the twist constant
Anisimov and DzyaloshinskiõÏ [23] have deduced

that when the elastic constants are not equal, the type

Figure 18. A strength 1
2 disclination line, shown in colour,

with escaped Õ 1 lines, shown as black crosses, running
from one part of the 1

2 line to another. At points where
strength Õ 1 lines meet the strength 1

2 disclination line the
character of the disclination changes abruptly. The inter-

Figure 20. A schematic showing the relationship between thesection indicated is examined in more detail in ® gure 19.
The results are from the same simulation as shown rotation vectors and the disclination line on either side of

the escaped Õ 1 line shown in ® gure 19.in ® gure 16.
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170 J. Hobdell and A. Windle

of strength 1
2 disclination lines which are stable in

three dimensions depends on the values of the elastic
constants. They quote the following two cases:

if k22> 1
2 (k11 +k33 ) , the planar wedge lines of strength

Ô 1
2 are stable;

if k22 < 1
2 (k11 +k33 ), the twist lines of strength Ô 1

2
are stable.

Simulations have been performed for both these
situations, with a high twist elastic constant and with a
low twist elastic constant. The disclination lines which
occur are very di� erent in each case. For a low twist
elastic constant, as shown in ® gure 21 the disclinations
are predominantly twist (coloured red) in character. For
a high twist elastic constant, as shown in ® gure 22 the
disclinations are predominantly wedge (coloured blue)
in character. Both ® ndings are in accord with the
theoretical predictions, although neither pure wedge is
eliminated for a low twist constant nor pure twist for
low splay/bend constants.

A more quantitative means of comparing the equal Figure 22. Results from a simulation performed on a
constants simulations, the high twist and the low twist 30 Ö 30 Ö 30 lattice with periodic boundary conditions.

The simulation was run with a high twist constant,constant simulations is to analyse the distribution of
k11=0´1, k22= 1, k33= 0´1, and b=30; it was run forcharacteristic angles of the disclinations which occur.
40 000 Monte Carlo trials per cell.Figures 23 (a) to 23 (c) are histograms showing the

distribution of disclination types in simulations. It is
interesting to note that when the twist constant is low, but that when the twist constant is high, there is a

broader distribution of types peaked at the wedge (0 ß )almost all the disclination lines are of twist character,
end. This s̀kewing’ of the distribution represents the fact
that for a given rotation (V ) vector, a wedge disclination
requires the line to be parallel to V , whereas for a twist
disclination it is normal to V which provides many more
possible orientations.

4.4. High splay constant Ð the polymeric case
The primary goal of this work has been to model

microstructure in liquid crystalline polymers. In this
section, results from a simulation run with elastic con-
stants in the ratio thought to be reasonable for main-
chain thermotropic LCPs are presented. The elastic
constants used are in the ratio k11 : k22 : k33 =100 : 1 : 10

and a typical model is shown in ® gure 24 for 40 000
Monte Carlo trials per cell. Almost all of the disclinations
are twist in character. Figure 25 shows a slice through
the simulation after 5000 Monte Carlo trials per cell.
The microstructure is very di� erent from the equal
constants simulation in § 4.2. It is apparent that there is
considerable twist distortion presentÐ consistent with
the low twist constant inserted into the simulation. In
particular, the escaped strength 1 disclinations which

Figure 21. Results from a simulation performed on a are observed in these simulations are most often of the
30 Ö 30 Ö 30 lattice with periodic boundary conditions.

twist-escaped strength +1 variety. Such structures haveThe simulation was run with a low twist constant,
zero splay distortion and so are indeed likely to bek11=1, k22=0´1, k33=1, and b =30; it was run for 40 000

Monte Carlo trials per cell. favoured when the splay constant is high. Such twist-
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171Modelling microstructure in L CPs

escaped lines are observed experimentally in liquid
crystalline polymers using fractography [14].

Another interesting feature of simulations run with
a high splay constant and low twist constant is the
tendency for layering to occur. Figure 26 is a section
which happens to show the layers clearly; they form
with twist distortion between the layers. It should be
stressed that although the structures are reminiscent of
cholesteric textures, there is no chirality present in the
free energy expression and the twist is equally likely to
be clockwise or anticlockwise. This layering occurs
because any deviation from the layer would involve
splay distortion which is prohibited by the high splay
constant. Within the layers there is bend distortion and

Figure 24. Results from a simulation run on a 30 Ö 30 Ö 30
lattice with periodic boundary conditions. The simulation
was run with elastic constants in the ratio thought to
occur in liquid crystalline polymers: k11= 100, k22= 1,

k33=10. The value of b was set to 30 and the simulation
was run for 40 000 Monte Carlo trials per cell. As can be
seen, the disclinations are mainly twist in nature.

also associated splay. The layering would account for
the micaceous texture often seen in thermotropic LCPs
[24, 25].

5. Summary

In this paper we have presented a numerical technique
for predicting microstructure in nematic liquid crystals.
It is an advance over previous techniques in that it
di� erentiates between the three distortions of splay, twist

Figure 23. Distribution of disclination types as characterized
by the angle between the disclination line and the rotation
vector. (a) For the simulation in ® gure 16: this simulation
was run with equal elastic constants. The disclinations are
predominantly of mixed character; there is no preference
for wedge or twist character disclinations for the situation
of equal elastic constants. The average characteristic angle
is 49 ß ; the number of disclination sites is 432. (b) For the
simulation in ® gure 21: this simulation was run with a
very low twist elastic constants and the distribution shows
the majority of the disclinations had characteristic angles
above 45 ß indicating they are of twist or predominantly
twist character. The average characteristic angle is 73 ß ;
the number of disclination sites is 434. (c) For the simu-
lation in ® gure 22: this simulation was run with a very
high twist elastic constant and the distribution shows the
majority of the disclinations had characteristic angles
below 45 ß indicating they are of wedge or predominantly
wedge character. The average characteristic angle is 37 ß ;
the number of disclination sites is 436.
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172 J. Hobdell and A. Windle

Figure 25. Part of a section
through the simulation shown
in ® gure 24 after 5000 Monte
Carlo trials per cell. Note in
particular the twist-escaped
strength +1 lines which are
shown shaded. Such s̀wirls’ are
common in simulations run
with a high splay elastic con-
stant, since twist-escape of a
+1 ( bend only) disclination
occurs without splay distortion.

Figure 26. Part of another section
through the simulation shown
in ® gure 24 showing layering.
The simulations run with a high
splay constant and low twist
constant often show a degree
of layering with twist distortion
between the layers and little
registry from one layer to the
next. In order for the director
to deviate from such a layered
structure it would have to
introduce splay distortion
which is highly unfavourable.

and bend and includes splay± splay compensation as a and elastic constants in the ratio considered to occur in
liquid crystalline polymers. With equal elastic constants,natural consequence of the calculation of the divergence
the character of the strength 1

2 disclinations seen inof the director ® eld in three dimensions.
simulations varies between the limiting case of pureThe calculation of the splay, twist and bend energies
wedge type and pure twist type. With a low twistfor a set of prede® ned geometries Ð the PoincareÂ point
constant, predominantly twist disclinations are seensingularities Ð agrees with analytical results. One of the
and with a high twist constant, predominantly wedgepoint defects in particular, the Col defect, has a region
disclinations.of splay± splay compensation and the correct deter-

Strength 1 disclination lines are topologically unstablemination of the distortions for this case is evidence for
with respect to escape in the third dimension. Escapedthe inclusion of splay± splay compensation.
strength 1 defects are seen in all the simulations, but theThe technique may be used to ® nd director ® elds
type of line varies dependent on the elastic constants.which minimize the Frank free energy for given boundary
With equal elastic constants the lines are escaped Õ 1conditions.
lines. These may be unrealistically favoured since theyIt is simple to include the e� ect of an aligning ® eld
exhibit saddle-splay distortion which is not assigned aninto simulations and with the inclusion of such a ® eld
energy in the simulations.the FreÂ edericksz transition has been simulated. The

As stated earlier, the primary goal of this work hascritical ® eld is correctly predicted for each geometry and
been to simulate microstructure in liquid crystallinethe variation of the director with higher ® elds also agrees
polymers by applying elastic constants in the ratiowith analytical theory.
which occurs in these materials. Simulations have beenThe technique has been used to simulate the bulk by
performed with the elastic constants in the ratioimposing periodic boundary conditions. In this mode,
k11 : k22 : k33=100 : 1 : 10 . The following conclusions havethe global minimum will be a monodomain regardless
been drawn:of the elastic constants applied. However, if simulations

(a) Strength 1
2 disclination lines in liquid crystallineare halted before the monodomain solution is found,

then networks of disclination lines are found. The polymers will be predominantly twist in character
as a result of the low twist elastic constant. Thislocation and character of the lines has been determined

by the use of t̀opological probes’. conclusion is supported to some extent by recent
experimental studies by Gieger [26] who hasA number of situations have been considered: equal

elastic constants, high twist constant, low twist constant observed LCPs in shear ¯ ow.
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[6] K ilian, A., and Hess, S., 1989, Z. Naturforsch, 44a, 693.constant. Experimental observation of fracture
[7] K ilian, A., and Hess, S., 1990. L iq. Cryst., 8, 465.surfaces by the authors [22] has revealed features
[8] Chuang, I., Durrer, R., Turok, N ., and Yurke, B.,

which are certainly consistent with twist-escaped 1991, Science, 251, 1336.
strength +1 lines. [9] Bedford, S. E., N icholson, T. M ., and W indle, A. H .,

1991, L iq. Cryst., 10, 63.(c) A degree of layering as a consequence of the high
[10] Zapotocky, M ., Goldbart, P. M ., and Goldenfeld, N .,splay constant is predicted for liquid crystalline

1995, Phys. Rev. E, 51, 1216.polymer melts. Put another way, the layering which [11] Metropolis, N ., Rosenbluth, A. W ., Rosenbluth,
gives rise to the micaceous fracture behaviour of M . N ., Teller, A. H ., and Teller, E., 1953, J. chem.
mouldings and is also apparent in the textures Phys., 21, 1087.

[12] Allen, M . P., and Tildesley, D . J., 1987, Computer[27] is seen as a direct consequence of the high
Simulation of L iquids, 1st Edn (Oxford: Oxfordsplay constant of the thermotropic polymer.
University Press).

[13] Lebwohl, P. A., and Lasher, G ., 1972, Phys. Rev. A,Further work is required to determine whether saddle-
6, 426.splay distortion is important in liquid crystalline poly-

[14] Hobdell, J. R., and W indle, A. H ., 1995, J. Chem. Soc.
mers. The reason that the splay constant is high in Faraday Trans., 91, 2497.
polymeric liquid crystals, the lack of chain ends, is not [15] Gruhn, T., and Hess, S., 1996, Z. Naturforsch, 51a, 1.

[16] Bedford, S. E., and W indle, A. H ., 1993, L iq. Cryst.,applicable to the case of saddle-splay. For pure splay,
15, 31.the only way a divergence can be supported without
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[20] Chandrasekhar, S., 1992, L iquid Crystals, 2nd Ednthe lack of chain ends is alleviated: any part of a chain

(Cambridge University Press), p. 99.
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